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The relativistic form of Painlevé
Jacques Fric, Université Paris-Diderot, Laboratoire SPHERE , Paris, France

Summary
We analyze what the relativistic form of Painlevé, first  in the history to be not singular on the
horizon,  reveals  on  Schwarzschild’s  problem  and  beyond,  how  they  contribute  to  the
epistemological understanding of general relativity and how the key place he gives implicitly to the
observer,  in his preliminary statement,  allows to settle the problem in a fundamentally physical
context. We will demonstrate how and why the breaking concept of spacetime orientation, key point
of his  innovative proposal was not understood, dooming his contribution to a total  failure.  The
examination of some original attributes exhibited by this form, will lead us to an epistemological
discussion on concepts, such as the expansion or collapse of an empty spacetime and how some of
its Newtonian attributes rely on a hidden anti-auto-duality revealed by this form of metric.

1 - Introductory article (10/24/1921)
In his first article (10/24/1921), [19], Painlevé convinced that general relativity is only a fashionable
way to present some original aspects of Newtonian gravitation engages in a critical analysis of its
philosophical  and  scientific  claims.  He  continues,  more  constructively  by  pointing  out  that
Schwarzschild's form is not the only solution to the problem as there is an infinity, depending only
on two arbitrary functions of the coordinate r.

He will give some generic form for them, in his second article [20],(11/14/1921)1, and proposes one
of them2, in this first paper which can be written3

 

d s ²=(1−
a
r
)d t ²+2 √a

r
d r . d t−(d r ²+r ²( s i n2θ d φ2

+d θ 2
)) , (1-2)

which, according to his opinion, seems to invalidate some claims of the Einstein's theory4. In his
conclusion, Painlevé misinterprets the meaning of the spectral shift, this leading him to make some
controversial statements about the infinitesimal line element (ds²).

This  led  to  discredit  his  proposal.  We will  show that,  beyond his  erroneous  interpretation,  his
concluding remarks are indicative of the method used by Painlevé.

2 - Second article (11/14/1921)

Generic form, in spherical coordinates, independent of time

In the following article (11/14/1921), after proposing an original and innovative covariant geometric
form, allowing to define a proper time generated by the gravitation in Newton's mechanics5, he
expands the statements made in his previous paper (10.24.1921):
1 This second article, written shortly after the first one, will clarify his first statement. Painlevé gives a general form

defining a class of a double infinity of solutions. This statement shows that  on the 10/24/1921 he had already
established this generic form and likely an important part of the article that follows.

2 Painlevé  had  understood  that  there  was  an  infinite  number  of  forms  of  the  metric  corresponding  to  the
Schwarzschild's solution and that the choice of the form of the metric was arbitrary. [5] Eisenstaedt J. (1982). p 174.

3 Gullstrand A. [10] proposed the same form independently, shortly after. Here, a = 2GM/c ² = 2GM, as we generally
set c = 1. The numbering of equations is referring to those of the articles of Painlevé with a prefix corresponding to
the rank of the article. Painlevé uses the same spherical coordinates (r, θ, φ) than Schwarzschild.

4 This form describes the expanding region "white hole" that neither Einstein nor Painlevé and his followers have
identified.

5 This form is the subject of another publication [9].
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"According to the Einsteinian mechanics,  the equations of motion must be part of  a large, but
special class of second-order equations, that define the geodesics of a four variables line element,
ds², such as:

 d s2
=A(r )d t 2

−2 B (r )d t d r−C (r )[ r2
(d θ2

+s i n2 θ d φ ) ]−D (r )d r2 (2-3) 6

For r = ∞, according to the principle of inertia and to the axiom of Fresnel, we must have A = V², 7

B = 0, C = D = 1, V denoting the velocity of light, far away from any matter field. By a suitable
choice of units, we assume V = 1."

Painlevé points out that the covariance constraint, so often invoked, constrain only the form of
equations and is in fact a "truism" because any reasonable theory can comply with it, therefore he
will constrain his form (2-3) by using the Einstein equation.

Painlevé defines a generic metric with a double infinity of functions which is a
solution of Einstein's equation

Then, Painlevé declares:

"Whatever the functions A(r), B(r), C(r), D(r),  that the experience would lead us to adopt, it is
always possible to form some invariant conditions that the coefficients of ds² must satisfy, when one
replaces r, θ , φ and t, by functions of arbitrary four variables.

But, a priori, Einstein claims that these invariant conditions should be ruled by the partial second
order derivatives of a special form, which depends on both the theories of Newtonian gravitation in
curvilinear coordinates, and of the theory of curvature of ordinary surfaces.8.
This is these stringent restrictions and not the truism of covariance which, among the possible ds ²
of the form (2-3), selects the following:

d s ²=(1−
2µ

f ( r )
)[ d t− χ (r )d r ]

2
− f 2

( r )( d θ2
+s i n2 θ d φ2

)−
f ' 2

(r )d r2

1−
2 µ
f ( r )

(2-4)

Where μ is a constant and f(r) and χ(r) are two arbitrary functions of r only, such that χ (r) tends to 
zero and f '(r) (always positive) tends to 1 when r tends to the infinity. "

Equation (2-4) satisfies identically the Einstein's equation in vacuum for any pair of functions f (r)
and χ (r). This defines a double infinite class of metric9, in spherical coordinates (t, r, θ, φ).

3 -Objectivity of the necessary oriented phenomenology of the solution

This is the key point of his solution that was totally misunderstood by the scientific community,
including  Einstein  and  Painlevé  himself  who  will  constrain  unduly  his  equation  (2-4)  by  the
“reversibility” postulate V of the second article, stating that the ds² should be invariant under a t to
-t transformation, leading him to declare that only quadratic terms were allowed in the metric!
The  oriented  character  of  the  horizon,  which  can  be  crossed  inward  only,  yields  a  physically
oriented phenomenology. 
6 There is a typo in the original text which reads: ds ² = A (r) dt ²-2B (r) dt.dr-C (r) [r ² dθ ² + sin ² θdφ ²]-D (r) dr ².
7 There is another typo in the original text which reads:  A = V, but as he set V =1, this has no consequences.
8 Although he does not say it explicitly, Painlevé refers to Einstein's equation.
9 For χ(r) = 0 and f(r) = r,→ f '(r) =1, one gets Schwarzschild's form. For χ(r) = (2M/r)1/2(1-2M/r)-1 and  f (r) = r, → f '(r)
= 1, one gets Painlevé's form, proposed in his 1st article (24/10/1921) and so on for other forms. Unfortunately, this form
coming from the constraint Rμν = 0, when computed with the generic metric (2-3), as stated by Painlevé, was forgotten!
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Therefore, (in this type of coordinates), the metric, which represents the phenomenology, must be
also oriented for formally removing the “singularity” on the horizon.

Painlevé's  equation  (1-2)  described this  asymmetry of  the  spacetime representation  by using  a
(dt.dr) term in the infinitesimal line element ds ², which allows to discriminate a motion defined by
dr/dτ > 0 from a motion defined by  dr/dτ  <0,10 which is  not possible,  if  all  terms of the line
element, are quadratic. This was clearly expressed by Lemaître, in his article [15], chapter 1111.

It is instructive that this is the crucial point that has led to the rejection of the Painlevé's proposal12.

This was confirmed at the debate on “infinite potentials on the horizon” held at the “Collège de
France” on April  7th 1922, where Einstein,  still  concerned by this  problem, ignoring Painlevé's
proposal13,  discards  the problem by a “demonstration” showing that  an infinite  pressure would
occur in the center of a collapsing ball of matter, before reaching the horizon radius[18]!

Although this form seemed odd to Einstein and his contemporaries, because of the presence of a
non-quadratic term, conferring locally an orientation to spacetime, this form directly derived from
spherical symmetry and constrained by the Einstein equation is perfectly valid. 

As  a  mathematician,  Painlevé,  could  not  renounce,  without  an  overwhelming  epistemological
reason,  to  his  proposal.  This  why he invoked (wrongly)  a  physical  “reversibility principle” for
superseding the mathematics!

10  In the form of Painlevé, as for the fiducial observer, the coordinate  t  is equal to  τ, proper time of the fiducial
observer, dr /dt = dr/dτ. So, the local anisotropy is implied by the presence of a cross term (dr.dt).

11  “This is because one wanted a static field that there is a singularity on the horizon which is actually fictitious”.
12 This is related to a misunderstanding of the representations of curved spaces. The fundamental mathematical work 

of H. Weyl and E. Cartan, still in progress at that time, was not advanced enough to have a clear understanding of 
such concepts, See [23] Scholz E. (2010).

13 Extracts from C. Normann report [18] (April 5th 1922) « It was Mr. Hadamard, celestial mechanics professor at the
Collège de France, who opened fire with a question relating to the formula by which Einstein expresses the new law of
universal gravitation. In this formula, under the simple form that Schwarzschild gave to it and that answers all the practical
needs of astronomy, there exists a certain term that Mr. Hadamard is very much concerned with; if the denominator of that
term becomes null, meaning if this term becomes infinite, the formula no longer makes sense, or at least one could demand
what is its physical meaning »…. 
« Einstein does not hide the fact that this very profound question is somewhat embarrassing to him. “If,” he says, “this
term could effectively become null somewhere in the universe, then it would be an unimaginable disaster for the theory;
and it is very difficult  to say  a priori  what would occur physically,  be-cause the formula ceases to apply.” Is  this
catastrophe—which Einstein pleasantly calls the “Hadamard catastrophe” possible, and in this case what would be its
physical effects? »
At that time, C.Nordmann  reports that he points out some arguments against  the possibility of such « catastrophe ».

« Einstein replied to me that he was not entirely reassured by these calculations that involve several hypotheses. He
would much prefer another means to escape “the misfortune which the Hadamard catastrophe represented for the theory.

 Effectively, in the following session of April 7th, he brought up the result of a calculation he had made concerning this
fine point. Here is what this calculation shows: If the volume increases indefinitely without increasing its density (this
would be the case fora sphere of water) it happens, well before the Hadamard catastrophe conditions could be met, that the
pressure at the center of the mass becomes infinite. In these conditions, given the General Theory of Relativity, the clocks
move at  zero speed,  nothing goes on, it  is  death;  and therefore any new change capable of bringing the Hadamard
catastrophe has become impossible. Einstein asked if it might not be the case that, following his expression, “the energy of
matter is transformed into energy of space,” that is to say, when mass is transformed into radiation. “That is all I can say,”
he concluded, “because I don’t want to make hypotheses,” which sounded like the very words of Newton »....

« During the last discussion session on April 7th, the question of the Hadamard catastrophe gave Mr. Painlevé the
opportunity to ask Einstein some questions regarding his gravitational and similar formulas which now allow us to
express new phenom-ena (the advance of the perihelion of Mercury, the deviation of light by gravity) observed in the
fields of celestial mechanics and optics ». ….

« It was really a very beautiful battle and a rewarding sport event. Einstein sat in the middle of the tempest, smiling
and remaining silent.  Then, suddenly raising his hand as a schoolboy requesting the teachers attention: “May I also be
permitted to say a little something?” he asked softly. Everybody laughed. Einstein spoke in the now restored silence,
and within a few minutes every-thing was made clear. I believe this is how one can summarize the essential points
provided by Einstein and which definitely settled the main objections raised »
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4- Flat attribute revealed in the tetrad formalism

In Cartesian coordinates, xµ = (x0, x1, x2, x3) = (t, x, y, z), the Painlevé metric becomes14

d s2
=ημ ν ( d xµ

−β µd x0
)( d xν

−βν d x0
).

Where ημν is the Minkowski tensor and β the shift vector such as

βµ
=

β
r

(0 , x , y , z ) , β=−√ 2m
r

, r=√( x2
+ y2

+ z2
) .

In  these  coordinates  whose  tangent  vectors  are  denoted  gµ.  Painlevé's  observers  who  free-fall
radially from zero velocity at infinity have a 4-velocity

vµ
=(1 , β1 , β 2 , β3

).

Let a set  of  four vectors  γm to define a  locally orthonormal frame attached to  this  free-falling
observer.  The associated local coordinates are called Xm. These coordinates15 define a locally flat
space time. Painlevé's basis of vectors gµ , in Minkowski's basis of vectors γm, are defined by

gµ = eµ
m  γm  → gμν = eµ

m eν
n ηmn  and  gμν =eµ

m
 eν

n ηmn

Conversely γm ,= em
µ gµ →  ηmn  = eµ

m
 eν

n gμν   and ηmn = eµ
m eν

n gμν

where eµ
m is called the tetrad and  em

µ the inverse tetrad ,with eµ
mem

ν = δµ
ν and  em

µeµ
n = δm

n.
In Painlevé's metric we get:

  eµ
m  = δµ

m – δµ
0β 

m,  em
µ  = δm

µ + δm
0β 

µ
.

 

Where δµ
m, δm

µ are the identity matrix and [δµ
0β 

m], [δm
0β 

µ] are matrix such as t[δµ
0β 

m] = - [δm
0β 

µ]
and conversely. As the tetrad and the inverse tetrad just differ by the sign of δµ

0β 
m and δm

0βµ, totally
encoding the curvature of spacetime, the above relations reveal a symmetry, between the Lorentzian
spacetime, defined by the set of  γm  vectors, and the curved spacetime, defined by the set of  gµ

vectors, looking like an anti-auto-duality [17]. This formal relation is also true for inverse metric
gμν. Moreover, as this is also satisfied, within, and with its counterpart, the expanding spacetime, of
opposite sign for dr.dt in Painlevé's form, all of these equations reveal the extensive symmetry of
this spacetime.

This auto-anti-duality is clearly exhibited in the kind of flat global coordinates which emerge from
Painlevé's  Cartesian  coordinates  that  Hamilton  & Lisle  noticed  in  their  paper  [11].  The  Ricci
rotation coefficients Γ 

k
mn, (antisymmetric on the two first indices), which encode the curvature of

spacetime, key parameter of the local geodesic equation16,  are identical when we replace some
tetrads eµ

m and inverse tetrads em
µ by corresponding Kronecker's symbols δµ

m and δm
µ.17

As the geodesic equation, in the tetrad frame, describes the motion of free-falling objects which is
the same than its counterpart in Painlevé coordinates, this confers to this equation a "flat flavor".18

14 See Hamilton A.J.S and Lisle J.P (2006),[11], for more details on this approach they called “The river model”.
15 These coordinates are strictly local (valid at a point). Their 1st-order derivatives vanishes but not those of second

order. So, in an infinitesimal vicinity of the point, they are correct at 1st-order. They do not derive from any analytic
system of “global coordinates” covering a patch of the manifold.

16 The geodesic equation in the tetrad frame for a 4-vector p of coordinates pk is: dpk/dτ + Γk
mn unpm = 0, where un are 

the components of the velocity of a radially free-fall observer.
17  Γkmn = ½ (dkmn -dmkn +dnmk - dnkm + dmnk -dknm) =  ½ (d'kmn -d'mkn +d'nmk - d'nkm + d'mnk -d'knm) where  dkmn = ηkl eλ

l en
ν  ∂ν

em
λ  and d'kmn =  ηkl  δλ

lδν
n  ∂ν(δm

λ+ δm
0βλ) = ηkl  δλ

lδν
n  ∂ν(δm

0βλ) = ∂n(δm
0βk), dkmn and  d'kmn are not identical but  give the

same Γkmn.
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This is corroborated by the redshift phenomenology of light in the Painlevé's form (between a light
ray emitted in  a Painlevé's  observer frame and received in  an other  Painlevé's  observer frame)
which obeys to the relativistic Doppler effect [8] . As soon as in 1922, M. Sauger [22] noticed that
the metric of the “Schwarzschild” problem,  could be built by using only the special relativity

The comparison between Γ 
λ
μν, Christoffel's symbols of Painlevé's Cartesian metric and Γ 

k
mn, Ricci's

rotation coefficients of Lorentz's frame, shows that the latter's, which reduce to Γ 
0
ij  = Γ 

i
0j, are a

subset of  Γ 
λ
μν.  This means that the transformation,  between the curved spacetime described by

Painlevé's metric, and the Lorentz's spacetime described in the tetrad formalism, just consists to
nullify a part of Christoffel's symbols.

The surviving symbols  Γ 
0
ij  =  Γ 

i
0j,  represent Ricci's rotation coefficients and  are, in fact,  the

projection, on the Euclidean spatial hypersurface (orthogonal to the Painlevé's observer geodesic),
of the extrinsic curvature called second fundamental form, a key parameter in general relativity!
This reveals how the curvature is represented within tetrad's formalism within Painlevé's metric.

5 - Vanishing of Landau-Lifchitz's pseudo-tensor.

The inverse metric

Even though the metric is widely used in general relativity when using the covariant description of
the theory, in non-covariant approaches, such as the Landau-Lifchitz proposal [14] who  claims that
gravitation is a field in a Minkowski spacetime, the inverse metric is more appropriate.  This is
bound to this formalism involving a field in a flat spacetime which one assume to be bound to the
local Minkowskian tangent space.

The inverse metric, in spherical coordinates, where ημν is Minkowski's tensor of inverse metric, may
be written

∂s² =  ημν ∂µ ∂ν + ∂t² +VμV  
ν ∂µ ∂ν

 =  δij ∂i ∂j  - [∂t  - (2M/r)1/2 ∂r ]²,

where the components of the 4-velocities  Vμ and Vμ, in the tangent and cotangent space are:

Vμ= {1, - (2M/r)1/2, 0, 0 } → Vμ= {-1, 0, 0, 0 }.

This inverse metric is the sum of the Euclidean metric and of the tensorial product of Vμ, (defined
above) by itself. This exhibits the key importance of this vector.

This form induces a foliation of spacetime, in these coordinates. The space sections, which are
Euclidean,  are  orthogonal  to  the  geodesic  worldlines  followed  by the  fiducial  observer,  (of  4-
velocity =  Vμ), called the Painlevé's observer. Here we used spherical coordinates which yield a
quite simple form.  But, as they suffer from a number of defects (singularity for  r = 0 and non-
unitary determinant), we will use the Cartesian coordinates which are exempt of these defects.

Introduction and definition of this pseudo-tensor

Landau and Lifchitz were looking for a conservation law in their minkowskian theoretical approach.
But the conservation equation of general relativity T μν

,ν  = 0 (covariant divergence that takes into
account the curvature) does not satisfy19 the conservation ordinary equation T μν

, ν= 0 , associated to
18 The change in local Minkowski's basis of vectors, when moving on the geodesic, is ruled by special relativity (local

boost). This surprising property is only exhibited in Cartesian Painlevé's form.
19 The covariant conservation equation Tμ

ν;μ = 0 → Tμ
ν;μ = g -1/2∂μ ([-g1/2][Tμ

ν]) – ½∂ν(gμ λ )T μ λ = 0, shows that, in the
vacuum,   ∂μTμ

ν=0,  as Tμ
ν ≡ 0   (except on the singularity at r = 0 where  Tμ

ν ≡ ∞). This is a special case which
corresponds to the case of the solution described by Painlevé's form of metric. The vanishing of this divergence
should not imply the vanishing of Landau-Lifchitz's pseudo-tensor. The semi-colon symbol “;” denotes the covariant
derivative and comma “,” the ordinary derivative.
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divergence in flat spacetime. For complying with the rules of divergence in flat spacetime they have
to  introduce  a  correcting  term  in  the  equation,  for  taking  into  account  the  effect  of  gravity.
Therefore, they introduce t 

μν that will represent the difference between the two laws, such that the
4-divergence, in flat spacetime, of its sum with its energy-momentum tensor will be zero. This leads
them to propose (T 

μν+t 
μν)20, in place of Tμ,ν which should comply with ∂ν(-g[T 

μν+t 
μν]) = 0.

In this equation, g denotes the metric's determinant and t 
μν is a pseudo-tensor which represents the

gravitation. This equation is not covariant because of the presence of  t 
μν  and of ordinary partial

derivatives. Note the position of the indices which favors an approach in the tangent space.
Landau and Lifchitz (1951), [14], proposed a symmetrical solution21 as defined in § 96 equation
(96,7) of the Landau & Lifchitz (1994), [13].
 

t 
μν =  -  G     μν        + ∂ρ[∂σ (-g) (g     μν  g     ρσ   – g     μρ  g     νσ  )].

8πG (-g)16πG

G 
μν is the Einstein's tensor and G is the gravitational constant.

In vacuum, as in Painlevé's solution, the energy-momentum tensor is null, implying G 
μν = 0, then:

t  
μν =   + ∂ρ[∂σ (-g) (g     μν  g     ρσ   – g     μρ  g     νσ  )].

(-g)16πG

A general analytic form22 is given by equation (96,8)23

The general analytic form of this pseudo-tensor, which is given in the Landau Lifchitz [13], by the
equations (96,8)24, (96,9) shows that it is a sum of terms, all having a 1st-order derivative, of the
metric,  in  factor25.  Notice that  there is  no second-order  derivative of  the metric  in the general
analytic form. This is a structural property of this pseudo-tensor, resulting from its construction.
Notice that the simplified form, in vacuum, seems to include some second-order derivative!26

This  important  property implies  that  it  will  vanish in the inertial  local  frame, because in these
coordinates, all the 1st-order derivatives of the metric vanish, therefore all of its terms will vanish.
This is a very strong condition which is valid for any form of metric! But we know that these
coordinates do not derive from analytic global coordinates over the manifold.

The vanishing of pseudo-tensor in Painlevé's Cartesian coordinates responds to a weaker constraint.
The 1st-order derivatives of the metric, in these coordinates, do not all vanish.  It is the algebraic
equation defining the pseudo-tensor which is null. Unlike the local inertial coordinates, Painlevé's
coordinates are analytic all over the manifold, which is a fundamental difference.
As noted, this non-covariant approach is based on the inverse metric. As the double divergence on
indices ρ,σ, of the tensor  λ 

μνρσ = K(g 
μνg 

ρσ-g 
μρg 

νσ), does not formally vanish because it is not anti-
20 The authors point out that the definition of a pseudo-tensor satisfying this equation, is not unique (Einstein's pseudo-

tensor is also a solution) but the choice made, which contains only 1st-order derivatives of the metric tensor, is in
addition symmetrical, this allowing the conservation of angular momentum.

21 They defined their pseudo-tensor, by noticing that the covariant conservation equation in flat spacetime is satisfied in
the inertial local coordinates, because, all the 1st-order derivatives of the metric vanish. In other coordinates, it is no
longer true, the pseudo-fensor is introduced for restoring this property.
22 Other  forms  exist,  see  equation  (98,9)  of  the  same  book:  (-g)tik={c4/16πG}{∂l(g.gik)∂m(g.glm)-∂l(g.gil)∂m(g.gkm)
+½gikglm∂p(g.gln)∂n(g.gpm) - [gilgmn∂p(g.gkn)∂l(g.gmp + gklgmn∂p(g.gin)∂l(g.gmp)] + gnpglm∂n(g.gil)∂p(g.gkm)+ ⅛(2gilgkm-gikglm)
(2gnpgqr-gpqgnr) [∂l(g.gnr)∂m(g.gpq)]}.
23 tik ={c4/16πG}{(2Γ nlmΓ pnp -Γ nlpΓ pmn  - Γ nlnΓ pmp )(gil gkm-gik glm )+gilgmn (Γ klpΓ pmn +Γ kmnΓ plp - Γ knpΓ plm  - Γ klmΓ pnp)
+ gklgmn (Γ ilpΓ pmn  + Γ imnΓ plp  - Γ inpΓ plm   -Γ ilmΓ pnp  ) + glm gnp (Γ ilnΓ kmp – Γ ilmΓ knp  ) }.
24 There is a misprint in equation (96,8) , 2nd line, read  Γ kipΓ pmn instead of Γ klkΓ pmn and  Γ kmnΓ plp instead of Γ pmnΓ plp
25 Christoffel's symbol is:  Γ ijk= ½ (gil)[∂jglk+ ∂kglj -∂lgjk).
26 As in vacuum, the Ricci tensor is null, involving additional relations, the second order derivatives will vanish, that is
required for consistency with eq. (96,8)!
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symmetric  on these indices, such a property can only result from symmetries, such as (anti)-auto-
duality, involving very special form of the inverse metric (g 

μν). The form that we have described,
∂s² =δ 

ij ∂i ∂j  - VμV 
ν ∂µ ∂ν

 , where Vμ  is a 4-vector which, in Cartesian coordinates, is

 Vμ= (2M)1/2(x² +y+ z²)-3/4{ 2M-1/2(x² +y+ z²)3/4, -x, -y, -z },

satisfies, not trivially, this condition27.
The structure of this  inverse metric  tensor allowing this  property is  clearly exhibited when we
decompose the pseudo-tensor (t 

μν) into pieces: the 00 component is a scalar, the 0i = i0 components
form a 3-vector and the ij components form a two-index symmetric spatial 3-matrix. The vanishing
of  each piece may then be analyzed independently when we perform  ∂ρ∂σλ 

μνρσ for  getting  the
pseudo-tensor28. As noted before, this should not be confused with the vanishing of pseudo-tensor,
in the inertial local coordinates, where all the 1st-order derivatives of the metric are vanishing.

Physical meaning of the vanishing of Landau-Lifchitz's pseudo-tensor

What would be the physical meaning of the vanishing of this pseudo-tensor? As it represents the
gravitation in Landau-Lifchitz's formalism, this means that gravity should be null!

In general relativity the (active) mass, generating the gravitational field is evaluated in terms of
conserved current through spatial surfaces surrounding the central singularity (it is computed at
infinity  where  the  asymptotic  flat  geometry  of  the  surface  is  an  ordinary  two-sphere).  The
calculation, using Landau-Lifchitz's formalism29, shows that, in this form of Painlevé's metric, the
mass of the "black hole" is zero. This indicates that, in these coordinates, no current representing the
effect of gravity, flows through these surfaces: This shows that these surfaces are "comoving" with
the flow, confirming, that Painlevé's form describes a spacetime which collapses and that comoving
observers, such as Painlevé's observers, do not undergo gravity.

Conclusion
This contribution of Painlevé, who unwillingly has strengthened  the general relativity whose bases
were still shaky at the time, essentially plagued by conceptual problems, has not been understood at
all  by his contemporaries. It is surprising that it  is Painlevé, who is a scientist educated in the
classical  Newtonian  theory30,  who  opens  up  an  innovative  debate  on  foundations  and
epistemological  implications  of  the  general  relativity.  Usually,  one  said  that  Painlevé  was  a
mediocre relativist. Whether we refer to his understanding and acceptance of the theory, clearly, this
is true. But, notwithstanding with his poor skill in this theory, he set up an innovative  form of the
metric who has baffled even the most brilliant minds, including Einstein, and whose merits are, at
last, recognized today.
One  may  consider  this  as  a  happy  coincidence,  but  one  may  also  consider  that  his  poor
understanding of the general relativity prevented him to stick at already approved concepts and
allowed his mind, free of these constraints, to be open at new ideas.
Keeping this in mind, we explored how this form enlightens the phenomenology of the solution and
calls some issues, which are far from having been fully clarified even today. This demonstrates the
universality of such analysis that raises issues far beyond from the original scope of the survey.

27 The form of Kerr-Schild, without rotation, where the 4-vector of components  Vμ is null, complies also to these
requirements.

28 All these pieces derive from shift vector (β) which is radial and whose value depends only of the radial coordinate.
Recall that g = -1 and that the metric does not depend on time (only the spatial derivatives are to be perform). The
vanishing of the scalar  t00, coming from  ∂ρ∂σλ00ρσ, is trivial because the inverse metric component  g00 = -1. The
matrix tij, coming from ∂ρ∂σλijρσ, vanishes because of the spherical symmetry of the spatial section gij of the inverse
metric.  The vector part  t0i = ti0, coming from ∂ρ∂σλ0iρσ, where the 1st-divergence will yield a set of curls whose
second-divergence will vanish! A similar method applies for the Kerr-Schild form, except for  t00 whose vanishing
results from the double divergence of a harmonic function.

29 See, [9], p. 292-295, for a demonstration, confirmed by using the ADM formalism p. 324-325.
30 And who is totally engaged in politics, at highest level (up to head of government), for 10 years, at that time!
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Annex : From Top left → bottom right : 1st page of the magazine « L'illustration », drawing of
the debate Einstein-Painlevé in « L'illustration (April 1922)», the crowd waiting for attending to
Einstein's  conference,  dinner  at  « Polytechnique »  in  honor  of  Einstein,.  Below :  Einstein's
conference at « Collège de France » (April 5th 1922) about the horizon problem.
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